
This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

156

Chapter 9CHAPTER 9

The Asterisk Gateway Interface (AGI)

Even he, to whom most things that most people
would think were pretty smart were pretty dumb,
thought it was pretty smart.
—Douglas Adams, The Salmon of Doubt

The Asterisk Gateway Interface, or AGI, provides a standard interface by which
external programs may control the Asterisk dialplan. Usually, AGI scripts are used to
do advanced logic, communicate with relational databases (such as PostgreSQL or
MySQL), and access other external resources. Turning over control of the dialplan to
an external AGI script enables Asterisk to easily perform tasks that would otherwise
be difficult or impossible.

This chapter covers the fundamentals of AGI communication. It will not teach you
how to be a programmer—rather, we’ll assume that you’re already a competent pro-
grammer, so that we can show you how to write AGI programs. If you don’t know
how to do computer programming, this chapter probably isn’t for you, and you
should skip ahead to the next chapter.

Over the course of this chapter, we’ll write a sample AGI program in each of the Perl,
PHP, and Python programming languages. Note, however, that because Asterisk pro-
vides a standard interface for AGI scripts, these scripts can be written in almost any
modern programming language. We’ve chosen to highlight Perl, PHP, and Python
because they’re the languages most commonly used for AGI programming.

Fundamentals of AGI Communication
Instead of releasing an API for programming, AGI scripts communicate with Aster-
isk over communications channels (file pointers, in programming parlance) known
as STDIN, STDOUT, and STDERR. Most computer programmers will recognize these chan-
nels, but just in case you’re not familiar with them we’ll cover them here.

,ch09.22228 Page 156 Wednesday, August 31, 2005 4:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Fundamentals of AGI Communication | 157

What Are STDIN, STDOUT, and STDERR?
STDIN, STDOUT, and STDERR are channels by which programs in Unix-like environ-
ments receive information from and send information to external programs. STDIN, or
“standard input,” is the information that is sent to the program, either from the key-
board or from another program. In our case, information coming from Asterisk itself
comes in on the program’s STDIN file handle. STDOUT, or “standard output,” is the file
handle that the AGI script uses to pass information back to Asterisk. Finally, the AGI
script can use the STDERR (“standard error”) file handle to write error messages to the
Asterisk console.

Let’s sum up these three communications concepts:

• An AGI script reads from STDIN to get information from Asterisk.

• An AGI script writes data to STDOUT to send information to Asterisk.

• An AGI script may write data to STDERR to send debug information to the
Asterisk console.

At this time, writing to STDERR from within your AGI script writes the
information only to the first Asterisk console—that is, the first Aster-
isk console started with the -c or -r parameters.

This is rather unfortunate, and will hopefully be remedied soon by the
Asterisk developers.

If you’re using the safe_asterisk program to start Asterisk (which you
probably are), it starts a remote console on TTY9. (Try pressing Ctrl-
Alt-F9, and see if you get an Asterisk command-line interface.) This
means that all the AGI debug information will print on only that remote
console. You may want to disable this console in safe_asterisk to allow
you to see the debug information in another console. (You may also
want to disable that console for security reasons, as you might not want
just anyone to be able to walk up to your Asterisk server and have access
to a console without any kind of authentication.)

The Standard Pattern of AGI Communication
The communication between Asterisk and an AGI script follows a predefined pat-
tern. Let’s enumerate the steps, and then we’ll walk through one of the sample AGI
scripts that come with Asterisk.

When an AGI script starts, Asterisk sends a list of variables and their values to the
AGI script. The variables might look something like this:

agi_request: test.py
agi_channel: Zap/1-1
agi_language: en
agi_callerid:
agi_context: default
agi_extension: 123
agi_priority: 2

,ch09.22228 Page 157 Wednesday, August 31, 2005 4:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

158 | Chapter 9: The Asterisk Gateway Interface (AGI)

After sending these variables, Asterisk sends a blank line. This is the signal that
Asterisk is done sending the variables and it is time for the AGI script to control the
dialplan.

At this point, the AGI script sends commands to Asterisk by writing to STDOUT. After
the script sends each command, Asterisk sends a response that the AGI script should
read. This action (sending commands to Asterisk and reading the responses) can
continue for the duration of the AGI script.

You may be asking yourself what commands you can use from within your AGI
script. Good question—we’ll cover the basic commands shortly.*

Calling an AGI Script from the Dialplan
In order to work properly, your AGI script must be executable. To use an AGI script
inside your dialplan, simply call the AGI() application, with the name of the AGI
script as the argument, like this:

exten => 123,1,Answer()
exten => 123,2,AGI(agi-test.agi)

AGI scripts often reside in the AGI directory (usually located in /var/lib/asterisk/agi-
bin), but you can specify the complete path to the AGI script.

In this chapter, we’ll first cover the sample agi-test.agi script that comes with Aster-
isk (which was written in Perl), then write a weather report AGI program in PHP,
and then finish up by writing an AGI program in Python to play a math game.

* To get a list of available AGI commands, type show agi at the Asterisk command-line interface. You can also
refer to Appendix C for an AGI command reference.

AGI(), EAGI(), DeadAGI(), and FastAGI()
In addition to the AGI() application, there are several other AGI applications suited to
different circumstances. While they won’t be covered in this chapter, they should be
quite simple to figure out once you understand the basics of AGI scripting.

The EAGI() (enhanced AGI) application acts just like AGI(), but allows your AGI script
to read the inbound audio stream on file descriptor number three.

The DeadAGI() application is also just like AGI(), but it works correctly on a channel
that is dead (i.e., a channel that has been hung up). As this implies, the regular AGI()
application doesn’t work on dead channels.

The FastAGI() application allows the AGI script to be called across the network, so
that multiple Asterisk servers can call AGI scripts from a central location.

,ch09.22228 Page 158 Wednesday, August 31, 2005 4:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Writing AGI Scripts in Perl | 159

Writing AGI Scripts in Perl
Asterisk comes with a sample AGI script called agi-test.agi. Let’s step through the file
while we cover the core concepts of AGI programming. While this particular script is
written in Perl, please remember that your own AGI programs may be written in
almost any programming language. Just to prove it, we’re going to cover AGI pro-
gramming in a couple of other languages later in the chapter.

Let’s get started! We’ll look at each section of the code in turn, and describe what it
does.

#!/usr/bin/perl

This line tells the system that this particular script is written in Perl, so it should use
the Perl interpreter to execute the script. If you’ve done much Linux or Unix script-
ing, this line should be familiar to you. This line assumes, of course, that your Perl
binary is located in the /usr/bin/ directory. Change this to match the location of your
Perl interpreter.

use strict;

use strict tells Perl to act, well, strict about possible programming errors, such as
undeclared variables. While not absolutely necessary, enabling this will help you
avoid common programming pitfalls.

$|=1;

This line tells Perl not to buffer its output—in other words, that it should write any
data immediately, instead of waiting for a block of data before outputting it. You’ll
see this as a recurrent theme throughout the chapter.

You should always use unbuffered output when writing AGI scripts.
Otherwise, your AGI may not work as expected, because Asterisk may
be waiting for the output of your program, while your program thinks
it has sent the output to Asterisk and is waiting for a response.

Set up some variables
my %AGI; my $tests = 0; my $fail = 0; my $pass = 0;

Here, we set up four variables. The first is a hash called AGI, which is used to store
the variables that Asterisk passes to our script at the beginning of the AGI session.
The next three are scalar values, used to count the total number of tests, the number
of failed tests, and the number of passed tests, respectively.

while(<STDIN>) {
 chomp;
 last unless length($_);
 if (/^agi_(\w+)\:\s+(.*)$/) {
 $AGI{$1} = $2;
 }
}

,ch09.22228 Page 159 Wednesday, August 31, 2005 4:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

160 | Chapter 9: The Asterisk Gateway Interface (AGI)

As we explained earlier, Asterisk sends a group of variables to the AGI program at
startup. This loop simply takes all of these variables and stores them in the hash
named AGI. They can be used later in the program or simply ignored, but they should
always be read from STDIN before continuing on with the logic of the program.

print STDERR "AGI Environment Dump:\n";
foreach my $i (sort keys %AGI) {
 print STDERR " -- $i = $AGI{$i}\n";
}

This loop simply writes each of the values that we stored in the AGI hash to STDERR. This
is useful for debugging the AGI script, as STDERR is printed to the Asterisk console.*

sub checkresult {
 my ($res) = @_;
 my $retval;
 $tests++;
 chomp $res;
 if ($res =~ /^200/) {
 $res =~ /result=(-?\d+)/;
 if (!length($1)) {
 print STDERR "FAIL ($res)\n";
 $fail++;
 } else {
 print STDERR "PASS ($1)\n";
 $pass++;
 }
 } else {
 print STDERR "FAIL (unexpected result '$res')\n";
 $fail++;
 }

This subroutine reads in the result of an AGI command from Asterisk and decodes
the result to determine whether the command passes or fails.

Now that the preliminaries are out of the way, we can get to the core logic of the AGI
script.

print STDERR "1. Testing 'sendfile'...";
print "STREAM FILE beep \"\"\n";
my $result = <STDIN>;
&checkresult($result);

This first test shows how to use the STREAM FILE command. The STREAM FILE com-
mand tells Asterisk to play a sound file to the caller, just as the Background() applica-
tion does. In this case, we’re telling Asterisk to play a file called beep.gsm.†

* Actually, to the first spawned Asterisk console (i.e., the first instance of Asterisk called with the –c or –r
option). If safe_asterisk was used to start Asterisk, the first Asterisk console will be on TTY9, which means
that you will not be able to view AGI errors remotely.

† Asterisk automatically selects the best format, based on translation cost and availability, so the file extension
is never used in the function.

,ch09.22228 Page 160 Wednesday, August 31, 2005 4:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Writing AGI Scripts in Perl | 161

You will notice that the second argument is passed by putting in a set of double
quotes, escaped by backslashes. Without the double quotes to indicate the second
argument, this command does not work correctly.

You must pass all required arguments to the AGI commands. If you
want to skip a required argument, you must send empty quotes (prop-
erly escaped in your particular programming language), as shown
above. If you don’t pass the required number of arguments, your AGI
script will not work.

You should also make sure you pass a line feed (the \n on the end of
the print statement) at the end of the command.

After sending the STREAM FILE command, this test reads the result from STDIN and
calls the checkresult subroutine to determine if Asterisk was able to play the file.
The STREAM FILE command takes three arguments, two of which are required:

• The name of the sound file to play back

• The digits that may interrupt the playback

• The position at which to start playing the sound, specified in number of samples
(optional)

In short, this test told Asterisk to play back the file named beep.gsm, and then
checked the result to make sure the command was successfully executed by Asterisk.

print STDERR "2. Testing 'sendtext'...";
print "SEND TEXT \"hello world\"\n";
my $result = <STDIN>;
&checkresult($result);

This test shows us how to call the SEND TEXT command, which is similar to the
SendText() application. This command will send the specified text to the caller, if
the caller’s channel type supports the sending of text.

The SEND TEXT command takes one argument: the text to send to the channel. If the
text contains spaces (as in the example above), the argument should be encapsu-
lated with quotes, so that Asterisk will know that the entire text string is a single
argument to the command. Again, notice that the quotation marks are escaped, as
they must be sent to Asterisk, not used to terminate the string in Perl.

print STDERR "3. Testing 'sendimage'...";
print "SEND IMAGE asterisk-image\n";
my $result = <STDIN>;
&checkresult($result);

This test calls the SEND IMAGE command, which is similar to the SendImage() applica-
tion. Its single argument is the name of an image file to send to the caller. As with the
SEND TEXT command, this command works only if the calling channel supports the
reception of images.

,ch09.22228 Page 161 Wednesday, August 31, 2005 4:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

162 | Chapter 9: The Asterisk Gateway Interface (AGI)

print STDERR "4. Testing 'saynumber'...";
print "SAY NUMBER 192837465 \"\"\n";
my $result = <STDIN>;
&checkresult($result);

This test sends Asterisk the SAY NUMBER command. This command behaves identi-
cally to the SayNumber() dialplan application. It takes two arguments:

• The number to say

• The digits that may interrupt the command

Again, since we’re not passing in any digits as the second argument, we need to pass
in an empty set of quotes.

print STDERR "5. Testing 'waitdtmf'...";
print "WAIT FOR DIGIT 1000\n";
my $result = <STDIN>;
&checkresult($result);

This test shows the WAIT FOR DIGIT command. This command waits the specified
number of milliseconds for the caller to enter a DTMF digit. If you want the com-
mand to wait indefinitely for a digit, use -1 as the timeout. This application returns
the decimal ASCII value of the digit that was pressed.

print STDERR "6. Testing 'record'...";
print "RECORD FILE testagi gsm 1234 3000\n";
my $result = <STDIN>;
&checkresult($result);

This section of code shows us the RECORD FILE command. This command is used to
record the call audio, similar to the Record() dialplan application. RECORD FILE takes
seven arguments, the last three of which are optional:

• The filename of the recorded file.

• The format in which to record the audio.

• The digits that may interrupt the recording.

• The timeout (maximum recording time) in milliseconds, or -1 for no timeout.

• The number of samples to skip before starting the recording (optional).

• The word BEEP, if you’d like Asterisk to beep before the recording starts (optional).

• The number of seconds before Asterisk decides that the user is done with the
recording and returns, even though the timeout hasn’t been reached and no
DTMF digits have been entered (optional). This argument must be preceded by s=.

In this particular case, we’re recording a file called testagi (in the GSM format), with
any of the DTMF digits 1 through 4 terminating the recording, and a maximum
recording time of 3,000 milliseconds.

print STDERR "6a. Testing 'record' playback...";
print "STREAM FILE testagi \"\"\n";
my $result = <STDIN>;
&checkresult($result);

,ch09.22228 Page 162 Wednesday, August 31, 2005 4:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Creating AGI Scripts in PHP | 163

The second part of this test plays back the audio that was recorded earlier, using the
STREAM FILE command. We’ve already covered STREAM FILE, so this section of code
needs no further explanation.

print STDERR "================== Complete ======================\n";
print STDERR "$tests tests completed, $pass passed, $fail failed\n";
print STDERR "==\n";

At the end of the AGI script, a summary of the tests is printed to STDERR, which
should end up on the Asterisk console.

In summary, you should remember the following when writing AGI programs in Perl:

• Turn on strict language checking with the use strict command.*

• Turn off output buffering by setting $|=1.

• Data from Asterisk is received using a while(<STDIN>) loop.

• Write values with the print command.

• Use the print STDERR command to write debug information to the Asterisk
console.

The Perl AGI Library
If you are interesting in building your own AGI scripts in Perl, you may want to
check out the Asterisk::AGI Perl module written by James Golovich, which is located
at http://asterisk.gnuinter.net. The Asterisk::AGI module makes it even easier to write
AGI scripts in Perl.

Creating AGI Scripts in PHP
We promised we’d cover several languages, so let’s go ahead and see what an AGI
script in PHP looks like. The fundamentals of AGI programming still apply; only the
programming language has changed. In this example, we’ll write an AGI script to
download a weather report from the Internet and deliver the temperature, wind
direction, and wind speed back to the caller.

#!/usr/bin/php -q
<?php

The first line tells the system to use the PHP interpreter to run this script. The –q
option turns off HTML error messages. You should ensure that there aren’t any extra
lines between the first line and the opening PHP tag, as they’ll confuse Asterisk.

change this to match the code of your particular city
for a complete list of US cities, go to
http://www.nws.noaa.gov/data/current_obs/
$weatherURL="http://www.nws.noaa.gov/data/current_obs/KMDQ.xml";

* This advice probably applies to any Perl program you might write, especially if you’re new to Perl.

,ch09.22228 Page 163 Wednesday, August 31, 2005 4:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

164 | Chapter 9: The Asterisk Gateway Interface (AGI)

This tells our AGI script where to go to get the current weather conditions. In this
example, we’re getting the weather for Huntsville, Alabama. Feel free to visit the web
site listed above for a complete list of stations throughout the United States of America.*

don't let this script run for more than 60 seconds
set_time_limit(60);

Here, we tell PHP not to let this program run for more than 60 seconds. This is a
safety net, which will end the script if for some reason it takes more than 60 seconds
to run.

turn off output buffering
ob_implicit_flush(false);

This command turns off output buffering, meaning that all data will be sent immedi-
ately to the AGI interface and will not be buffered.

turn off error reporting, as it will most likely interfere with
the AGI interface
error_reporting(0);

This command turns off all error reporting, as it can interfere with the AGI interface.
(You might find it helpful to comment out this line during testing.)

create file handles if needed
if (!defined('STDIN'))
{
 define('STDIN', fopen('php://stdin', 'r'));
}
if (!defined('STDOUT'))
{
 define('STDOUT', fopen('php://stdout', 'w'));
}
if (!defined('STDERR'))
{
 define('STDERR', fopen('php://stderr', 'w'));
}

This section of code ensures that we have open file handles for STDIN, STDOUT, and
STDERR, which will handle all communication between Asterisk and our script.

retrieve all AGI variables from Asterisk
while (!feof(STDIN))
{
 $temp = trim(fgets(STDIN,4096));
 if (($temp == "") || ($temp == "\n"))
 {
 break;
 }

* We apologize to our readers outside of the United States for using a weather service that only works for U.S.
cities. If you can find a good international weather service that provides its data in XML, it shouldn’t be too
hard to change this AGI script to work with that particular service. Once we find one, we’ll update this script
for future editions.

,ch09.22228 Page 164 Wednesday, August 31, 2005 4:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Creating AGI Scripts in PHP | 165

 $s = split(":",$temp);
 $name = str_replace("agi_","",$s[0]);
 $agi[$name] = trim($s[1]);
}

Next, we’ll read in all of the AGI variables passed to us by Asterisk. Using the fgets
command in PHP to read the data from STDIN, we’ll save each variable in the hash
called $agi. Remember that we could use these variables in the logic of our AGI
script, although we won’t in this example.

print all AGI variables for debugging purposes
foreach($agi as $key=>$value)
{
 fwrite(STDERR,"-- $key = $value\n");
 fflush(STDERR);
}

Here, we print the variables back out to STDERR for debugging purposes.

#retrieve this web page
$weatherPage=file_get_contents($weatherURL);

This line of code retrieves the XML file from the National Weather Service and puts
the contents into the variable called $weatherPage. This variable will be used later on
to extract out the pieces of the weather report that we want.

#grab temperature in Fahrenheit
if (preg_match("/<temp_f>([0-9]+)<\/temp_f>/i",$weatherPage,$matches))
{
 $currentTemp=$matches[1];
}

This section of code extracts the temperature (in Fahrenheit) from the weather
report, using the preg_match command. This command uses Perl-compatible regular
expressions* to extract out the needed data.

#grab wind direction
if (preg_match("/<wind_dir>North<\/wind_dir>/i",$weatherPage))
{
 $currentWindDirection='northerly';
}
elseif (preg_match("/<wind_dir>South<\/wind_dir>/i",$weatherPage))
{
 $currentWindDirection='southerly';
}
elseif (preg_match("/<wind_dir>East<\/wind_dir>/i",$weatherPage))
{
 $currentWindDirection='easterly';
}
elseif (preg_match("/<wind_dir>West<\/wind_dir>/i",$weatherPage))
{
 $currentWindDirection='westerly';

* The ultimate guide to regular expressions is O’Reilly’s Mastering Regular Expressions, by Jeffrey Friedl.

,ch09.22228 Page 165 Wednesday, August 31, 2005 4:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

166 | Chapter 9: The Asterisk Gateway Interface (AGI)

}
elseif (preg_match("/<wind_dir>Northwest<\/wind_dir>/i",$weatherPage))
{
 $currentWindDirection='northwesterly';
}
elseif (preg_match("/<wind_dir>Northeast<\/wind_dir>/i",$weatherPage))
{
 $currentWindDirection='northeasterly';
}
elseif (preg_match("/<wind_dir>Southwest<\/wind_dir>/i",$weatherPage))
{
 $currentWindDirection='southwesterly';
}
elseif (preg_match("/<wind_dir>Southeast<\/wind_dir>/i",$weatherPage))
{
 $currentWindDirection='southeasterly';
}

The wind direction is found through the use of preg_match (located in the wind_dir
tags) and is assigned to the variable $currentWindDirection.

#grab wind speed
if (preg_match("/<wind_mph>([0-9.]+)<\/wind_mph>/i",$weatherPage,$matches))
{
 $currentWindSpeed = $matches[1];
}

Finally, we’ll grab the current wind speed and assign it to the $currentWindSpeed
variable.

tell the caller the current conditions
if ($currentTemp)
{
 fwrite(STDOUT,"STREAM FILE temperature \"\"\n");
 fflush(STDOUT);
 $result = trim(fgets(STDIN,4096));
 checkresult($result);
 fwrite(STDOUT,"STREAM FILE is \"\"\n");
 fflush(STDOUT);
 $result = trim(fgets(STDIN,4096));
 checkresult($result);
 fwrite(STDOUT,"SAY NUMBER $currentTemp \"\"\n");
 fflush(STDOUT);
 $result = trim(fgets(STDIN,4096));
 checkresult($result);
 fwrite(STDOUT,"STREAM FILE degrees \"\"\n");
 fflush(STDOUT);
 $result = trim(fgets(STDIN,4096));
 checkresult($result);
 fwrite(STDOUT,"STREAM FILE fahrenheit \"\"\n");
 fflush(STDOUT);
 $result = trim(fgets(STDIN,4096));
 checkresult($result);
}

,ch09.22228 Page 166 Wednesday, August 31, 2005 4:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Creating AGI Scripts in PHP | 167

if ($currentWindDirection && $currentWindSpeed)
{
 fwrite(STDOUT,"STREAM FILE with \"\"\n");
 fflush(STDOUT);
 $result = trim(fgets(STDIN,4096));
 checkresult($result);
 fwrite(STDOUT,"STREAM FILE $currentWindDirection \"\"\n");
 fflush(STDOUT);
 $result = trim(fgets(STDIN,4096));
 checkresult($result);
 fwrite(STDOUT,"STREAM FILE wx/winds \"\"\n");
 fflush(STDOUT);
 $result = trim(fgets(STDIN,4096));
 checkresult($result);
 fwrite(STDOUT,"STREAM FILE at \"\"\n";)
 fflush(STDOUT);
 $result = trim(fgets(STDIN,4096));
 checkresult($result);
 fwrite(STDOUT,"SAY NUMBER $currentWindSpeed \"\"\n");
 fflush(STDOUT);
 $result = trim(fgets(STDIN,4096));
 checkresult($result);
 fwrite($STDOUT,"STREAM FILE miles-per-hour \"\"\n");
 fflush(STDOUT);
 $result = trim(fgets(STDIN,4096));
 checkresult($result);
}

Now that we’ve collected our data, we can send AGI commands to Asterisk (checking
the results as we go) that will deliver the current weather conditions to the caller. This
will be achieved through the use of the STREAM FILE and SAY NUMBER AGI commands.

We’ve said it before, and we’ll say it again: when calling AGI commands, you must
pass in all of the required arguments. In this case, both STREAM FILE and SAY NUMBER
commands require a second argument; we’ll pass empty quotes escaped by the back-
slash character.

You should also notice that we call the fflush command each time we write to
STDOUT. While this is arguably redundant, there’s no harm in ensuring that the AGI
command is not buffered and is sent immediately to Asterisk.

function checkresult($res)
{
 trim($res);
 if (preg_match('/^200/',$res))
 {
 if (! preg_match('/result=(-?\d+)/',$res,$matches))
 {
 fwrite(STDERR,"FAIL ($res)\n");
 fflush(STDERR);
 return 0;
 }
 else

,ch09.22228 Page 167 Wednesday, August 31, 2005 4:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

168 | Chapter 9: The Asterisk Gateway Interface (AGI)

 {
 fwrite(STDERR,"PASS (".$matches[1].")\n");
 fflush(STDERR);
 return $matches[1];
 }
 }
 else
 {
 fwrite(STDERR,"FAIL (unexpected result '$res')\n");
 fflush(STDERR);
 return -1;
 }
}

The checkresult function is identical in purpose to the checkresult subroutine we
saw in our Perl example. As its name suggests, it checks the result that Asterisk
returns whenever we call an AGI command.

?>

At the end of the file, we have our closing PHP tag. Don’t place any whitespace after
the closing PHP tag, as it can confuse the AGI interface.

We’ve now covered two different languages, in order to demonstrate the similarities
and differences of programming an AGI script in PHP as opposed to Perl. The fol-
lowing things should be remembered when writing an AGI script in PHP:

• Invoke PHP with the –q switch; it turns off HTML in error messages.

• Turn off the time limit, or set it to a reasonable value (newer versions of PHP
automatically disable the time limit when PHP is invoked from the command
line).

• Turn off output buffering with the ob_implicit_flush(false) command.

• Open file handles to STDIN, STDOUT, and STDERR (newer versions of PHP may have
one or more of these file handles already opened—see the code above for a slick
way of making this work across most versions of PHP).

• Read variables from STDIN using the fgets function.

• Use the fwrite function to write to STDOUT and STDERR.

• Always call the fflush function after writing to either STDOUT or STDERR.

The PHP AGI Library
For advanced AGI programming in PHP, you may want to check out the PHPAGI
project at http://phpagi.sourceforge.net. It was originally written by Matthew Asham
and is being developed by several other members of the Asterisk community.

,ch09.22228 Page 168 Wednesday, August 31, 2005 4:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Writing AGI Scripts in Python | 169

Writing AGI Scripts in Python
The AGI script we’ll be writing in Python, called “The Subtraction Game,” was
inspired by a Perl program written by Ed Guy and discussed by him at the 2004
AstriCon conference. Ed described his enthusiasm for the power and simplicity of
Asterisk when he found he could write a quick Perl script to help his young daughter
improve her math skills.

Since we’ve already written a Perl program using AGI, and Ed has already written the
math program in Perl, we figured we’d take a stab at it in Python!

Let’s go through our Python script.

#!/usr/bin/python

This line tells the system to run this script in the Python interpreter. For small
scripts, you may consider adding the –u option to this line, which will run Python in
unbuffered mode. This is not recommended, however, for larger or frequently used
AGI scripts, as it can affect system performance.

import sys
import re
import time
import random

Here, we import several libraries that we’ll be using in our AGI script.

Read and ignore AGI environment (read until blank line)

env = {}
tests = 0;

while 1:
 line = sys.stdin.readline().strip()

 if line == '':
 break
 key,data = line.split(':')
 if key[:4] <> 'agi_':
 #skip input that doesn't begin with agi_
 sys.stderr.write("Did not work!\n");
 sys.stderr.flush()
 continue
 key = key.strip()
 data = data.strip()
 if key <> '':
 env[key] = data

sys.stderr.write("AGI Environment Dump:\n");
sys.stderr.flush()
for key in env.keys():
 sys.stderr.write(" -- %s = %s\n" % (key, env[key]))
 sys.stderr.flush()

,ch09.22228 Page 169 Wednesday, August 31, 2005 4:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

170 | Chapter 9: The Asterisk Gateway Interface (AGI)

This section of code reads in the variables that are passed to our script from Aster-
isk, and saves them into a dictionary named env. These values are then written to
STDERR for debugging purposes.

def checkresult (params):
 params = params.rstrip()
 if re.search('^200',params):
 result = re.search('result=(\d+)',params)
 if (not result):
 sys.stderr.write("FAIL ('%s')\n" % params)
 sys.stderr.flush()
 return -1
 else:
 result = result.group(1)
 #debug("Result:%s Params:%s" % (result, params))
 sys.stderr.write("PASS (%s)\n" % result)
 sys.stderr.flush()
 return result
 else:
 sys.stderr.write("FAIL (unexpected result '%s')\n" % params)
 sys.stderr.flush()
 return -2

The checkresult function is almost identical in purpose to the checkresult subrou-
tine in the sample Perl AGI script we covered earlier in the chapter. It reads in the
result of an Asterisk command, parses the answer, and reports whether or not the
command was successful.

def sayit (params):
 sys.stderr.write("STREAM FILE %s \"\"\n" % str(params))
 sys.stderr.flush()
 sys.stdout.write("STREAM FILE %s \"\"\n" % str(params))
 sys.stdout.flush()
 result = sys.stdin.readline().strip()
 checkresult(result)

The sayit function is a simple wrapper around the STREAM FILE command.

def saynumber (params):
 sys.stderr.write("SAY NUMBER %s \"\"\n" % params)
 sys.stderr.flush()
 sys.stdout.write("SAY NUMBER %s \"\"\n" % params)
 sys.stdout.flush()
 result = sys.stdin.readline().strip()
 checkresult(result)

The saynumber function is a simple wrapper around the SAY NUMBER command.

def getnumber (prompt, timelimit, digcount):
 sys.stderr.write("GET DATA %s %d %d\n" % (prompt, timelimit, digcount))
 sys.stderr.flush()
 sys.stdout.write("GET DATA %s %d %d\n" % (prompt, timelimit, digcount))
 sys.stdout.flush()
 result = sys.stdin.readline().strip()
 result = checkresult(result)

,ch09.22228 Page 170 Wednesday, August 31, 2005 4:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Writing AGI Scripts in Python | 171

 sys.stderr.write("digits are %s\n" % result)
 sys.stderr.flush()
 if result:
 return result
 else:
 result = -1

The getnumber function calls the GET DATA command to get DTMF input from the
caller. It is used in our program to get the caller’s answers to the subtraction problems.

limit=20
digitcount=2
score=0
count=0
ttanswer=5000

Here, we initialize a few variables that we’ll be using in our program.

starttime = time.time()
t = time.time() - starttime

In these lines we set the starttime variable to the current time and initialize t to zero.
We’ll use the t variable to keep track of the number of seconds that have elapsed
since the AGI script was started.

sayit("subtraction-game-welcome")

Next, we welcome the caller to the subtraction game.

while (t < 180):

 big = random.randint(0,limit+1)
 big += 10
 subt= random.randint(0,big)
 ans = big - subt
 count += 1

 #give problem:
 sayit("subtraction-game-next");
 saynumber(big);
 sayit("minus");
 saynumber(subt);
 res = getnumber("equals",ttanswer,digitcount);

 if (int(res) == ans) :
 score+=1
 sayit("subtraction-game-good");
 else :
 sayit("subtraction-game-wrong");
 saynumber(ans);

 t = time.time() - starttime

This is the heart of the AGI script. We loop through this section of code and give
subtraction problems to the caller until 180 seconds have elapsed. Near the top of

,ch09.22228 Page 171 Wednesday, August 31, 2005 4:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

172 | Chapter 9: The Asterisk Gateway Interface (AGI)

the loop, we calculate two random numbers and their difference. We then present
the problem to the caller, and read in the caller’s response. If the caller answers
incorrectly, we give the correct answer.

pct = float(score)/float(count)*100;
sys.stderr.write("Percentage correct is %d\n" % pct)
sys.stderr.flush()

sayit("subtraction-game-timesup")
saynumber(score)
sayit("subtraction-game-right")
saynumber(count)
sayit("subtraction-game-pct")
saynumber(pct)

After the users are done answering the subtraction problems, they are given their
scores.

As you have seen, the basics you should remember when writing AGI scripts in
Python are:

• Flush the output buffer after every write. This will ensure that your AGI pro-
gram won’t hang while Asterisk is waiting for the buffer to fill and Python is
waiting for the response from Asterisk.

• Read data from Asterisk with the sys.stdin.readline command.

• Write commands to Asterisk with the sys.stdout.write command. Don’t forget
to call sys.stdout.flush after writing.

The Python AGI Library
If you are planning on writing lot of Python AGI code, you may want to check out
Karl Putland’s Python module, Pyst. You can find it at http://www.sourceforge.net/
projects/pyst/.

Debugging in AGI
Debugging AGI programs, as with any other type of program, can be frustrating.
Luckily, there are two advantages to debugging AGI scripts. First, since all the com-
munications between Asterisk and the AGI program happen over STDIN and STDOUT
(and, of course, STDERR), you should be able to run your AGI script directly from the
operating system. Second, Asterisk has a handy command for showing all the com-
munications between itself and the AGI script: agi debug.

,ch09.22228 Page 172 Wednesday, August 31, 2005 4:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

Debugging in AGI | 173

Debugging from the Operating System
As mentioned above, you should be able to run your program directly from the oper-
ating system to see how it behaves. The secret here is to act just like Asterisk does,
providing your script with the following:

• A list of variables and their values, such as agi_test:1.

• A blank line feed (/n) to indicate that you’re done passing variables.

• Responses to each of the AGI commands from your AGI script. Usually, typing
200 response=1 is sufficient.

Trying your program directly from the operating system may help you to more easily
spot bugs in your program.

Using Asterisk’s agi debug Command
The Asterisk command-line interface has a very useful command for debugging AGI
scripts, which is called (appropriately enough) agi debug. If you type agi debug at an
Asterisk console and then run an AGI, you’ll see something like the following:

 -- Executing AGI("Zap/1-1", "temperature.php") in new stack
 -- Launched AGI Script /var/lib/asterisk/agi-bin/temperature.php
AGI Tx >> agi_request: temperature.php
AGI Tx >> agi_channel: Zap/1-1
AGI Tx >> agi_language: en
AGI Tx >> agi_type: Zap
AGI Tx >> agi_uniqueid: 1116732890.8
AGI Tx >> agi_callerid: 101
AGI Tx >> agi_calleridname: Tom Jones
AGI Tx >> agi_callingpres: 0
AGI Tx >> agi_callingani2: 0
AGI Tx >> agi_callington: 0
AGI Tx >> agi_callingtns: 0
AGI Tx >> agi_dnid: unknown
AGI Tx >> agi_rdnis: unknown
AGI Tx >> agi_context: incoming
AGI Tx >> agi_extension: 141
AGI Tx >> agi_priority: 2
AGI Tx >> agi_enhanced: 0.0
AGI Tx >> agi_accountcode:
AGI Tx >>
AGI Rx << STREAM FILE temperature ""
AGI Tx >> 200 result=0 endpos=6400
AGI Rx << STREAM FILE is ""
AGI Tx >> 200 result=0 endpos=5440
AGI Rx << SAY NUMBER 67 ""
 -- Playing 'digits/60' (language 'en')
 -- Playing 'digits/7' (language 'en')
AGI Tx >> 200 result=0
AGI Rx << STREAM FILE degrees ""

,ch09.22228 Page 173 Wednesday, August 31, 2005 4:58 PM

This is the Title of the Book, eMatter Edition
Copyright © 2005 O’Reilly & Associates, Inc. All rights reserved.

174 | Chapter 9: The Asterisk Gateway Interface (AGI)

AGI Tx >> 200 result=0 endpos=6720
AGI Rx << STREAM FILE fahrenheit ""
AGI Tx >> 200 result=0 endpos=8000
 -- AGI Script temperature.php completed, returning 0

You’ll see three types of lines while your AGI script is running. The first type, pref-
aced with AGI TX >>, are the lines that Asterisk transmits to your program’s STDIN.
The second type, prefaced with AGI RX <<, are the commands your AGI program
writes back to Asterisk over STDOUT. The third type, prefaced by --, are the standard
Asterisk messages presented as it executes certain commands.

To disable AGI debugging after it has been started, simply type agi no debug at an
Asterisk console.

Using the agi debug command will enable you to see the communication between
Asterisk and your program, which can be very useful when debugging. Hopefully, these
two tips will greatly improve your ability to write and debug powerful AGI programs.

Conclusion
For a developer, AGI is one of the more revolutionary and compelling reasons to
choose Asterisk over a closed, proprietary PBX. Still, AGI is only part of the picture.
For those of us who are less developers and more systems integrators or power users,
Chapter 10 will explore the wealth of accoutrements that make Asterisk compelling
to so many people.

,ch09.22228 Page 174 Wednesday, August 31, 2005 4:58 PM

